ABR Rate Control for Multimedia Traffic Using Microeconomics

Errin W. Fulp and Douglas S. Reeves

North Carolina State University
Department of Electrical and Computer Engineering
Raleigh, NC

Research sponsored by:
NEC C&C Research Laboratories
Princeton, NJ

US Air Force Office of Scientific Research
ABR Traffic Management

• Management of ABR bandwidth to provide QoS in an efficient and fair manner

• Fairness
 – Max-min - Every user is entitled to a fair share
 – Equitable - Every user has the same level of utility (satisfaction)
 – The scalability of each application may be different, so max-min may not be equitable
Microeconomic Traffic Management

Microeconomics —

The study of the allocation of scarce resources among competing ends. *Nicholson*

- Advantages
 - Maximize utility
 - Efficient and equitable resource allocations
 - Strong theoretical foundation
Competitive Market Model

- Consumers and producers are price takers
- Price based on supply and demand
 - Each user pays \(\textit{tokens} \) for their consumption
 - Price influences user behavior
 - Market seeks equilibrium (supply = demand)
- Can yield efficient and equitable resource allocations
Price-Based ABR Traffic Management

- User (consumer) purchases bandwidth
- Switch (producer) sells bandwidth at market price

- Price is based on supply and demand, and is distributed using RM-cells
Switches

- ABR bandwidth priced (non-storable resource)
- Each output link is an independent dynamic competitive market
- Price for link i is determined using a modified tâtonnement process
 - Allows demands to change dynamically
- Switch inserts the price in the RM-cell if, it is higher
Example Allocation and Prices

- Maximum link bandwidth
- 95% of link bandwidth
- Total allocated
- Price

\[p_{n+1} = p_n \cdot \frac{d_n^i}{\alpha \cdot s^i} \]

new price \hspace{0.5cm} current price \hspace{0.5cm} aggregate demand

Aggregate demand \hspace{0.5cm} ABR capacity

E. W. Fulp
User

- Generates RM-cells to obtain route price
 - Received price corresponds to congested link
- Determines transmission rate based on
 - Price
 - Bandwidth desired
 - Budget
 - QoS profile, utility curve
E. W. Fulp
Optimality

Pareto optimal - *No user can increase their satisfaction without decreasing the satisfaction of another*

- Steady State
 - Reaches Pareto optimal distribution
 - Price equation always moves towards *equilibrium*

- Network Dynamics
 - Single equilibrium price does not exist
 - Can achieve optimal (Pareto) allocations over 92% of the time.

- Are *equitable* allocations achievable?
Experimental Results

• Determine
 – How equitable under dynamic conditions
 – Compare with perfect max-min and demand-based WMM

• Simulation
 – 152 users transmitting MPEG-compressed video traffic with random start times
 – Two types of users MoD and Teleconferencing
Average % GoB

Demand-WMM
Max-Min
Price Method

Average QoS Scores

Demand-WMM
Max-Min
Price Method

Average QoS Scores for MoD Users

Average QoS Scores for Teleconferencing Users

Price ABR
Demand-based WMM
Max-min
Conclusions

- ABR traffic management based on dynamic competitive markets
- Abilities
 - Allow users to maximize individual QoS
 - Adapt to changes in demand over time
 - Efficient and equitable allocations
 - Independent of traffic types
 - State-less implementation