Network Resources and QoS

- Wide variety of network applications
 - Many require certain Quality of Service (QoS)
 - Achieved through proper resource allocation
- Network resources
 - Bandwidth, buffer space and processor time
 - Shared and finite
- Resource demands continue to increase
 - New killer applications and more users
The Tragedy of the Commons

- Want to prevent *The Tragedy of the Commons*
 - Shared finite resource with no *direct* feedback
 - Consumers will always desire more
- Pricing can provide
 - Network control
 - Optimal resource allocations
 - Mechanism for cost recovery

Pricing Misconceptions

- No congestion, supply will be greater than demand
- Pricing will be based on content only; *information economy, not a resource economy*
- Economists have already solved this problem
- Current telephone pricing model is adequate
Resource Pricing

- Pricing goals
 - Competitive
 - Usage-sensitive - time and volume (not flat)
 - Incentive for users to conform (market demands)
 - Differentiated pricing (value across services)

- Service types
 - Guaranteed - QoS, price or resources? How long?
 - Best effort (elastic traffic) - No guarantees but fair treatment

Competitive Market Model

- Model - consumers, producers and scarce resources

- Prices
 - Influence behavior
 - Based on supply & demand
 - Equilibrium when demand = supply

- Advantages
 - Maximize utility (QoS)
 - Optimal and fair distributions
Optimality and Fairness

- **Pareto-optimal** (economics) - No one can increase their utility without decreasing the utility of another

- **Weighted max-min** (network) - Indifferent to the number of hops

- **Proportionally fair per unit charge** (network/economic) - Considers the number of hops

- **Social welfare** (economics)
 - **Equity criterion** - Equal utility
 - **Utility criterion** - $\max\{\sum \text{utility}\}$

Which is appropriate?

Fairness Examples

Assume each resource has supply of 1.

- Max-min fair - allocation $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$

- Proportionally fair per unit charge - allocation $\{\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\}$
Economics and Networks

Using a market model for network resource pricing

- Users ≡ consumers
- Switches ≡ producers
- Link bandwidth ≡ resource

Implementation issues

- Where and how is the price set?
- How long is the price valid (time scale)?
- How is market information distributed?
- Is the method scalable?

Auction Methods

- Users bid at centralize broker for resources
- Auction must close before resources are sold
- Large time scale (bidding process)
- Appropriate for long term agreements
Smart Market

- Users place bid in data packets
- Switches forward packets based on bid and local price
- Feedback based on observed QoS

Spot Market

Model consists of - switches, users and Network Brokers
- Switch - Each link is an independent market
- User - Seeks resources
- Network Broker (NB) - Represents the user
Spot Market

- Switch
 - Prices updated based on supply and demand
 - Bandwidth is a **non-storable** resource
 - Immediate availability (no reservation overhead)
- User
 - Charged for usage (similar to residential electricity)
- Network Broker (NB) - Represents the user
 - Located at the network edge
 - Maximizes utility (QoS)

Spot Market Performance

Constant demand

- Proofs of optimal and fair allocations

Network dynamics - simulations

- Optimal allocations over 92% of the time

Example Simulation Results

- Compare *perfect* max-min and demand WMM
- Measure QoS, desire *equitable* allocation
- 152 users - MPEG videos and random start times
- Two types of users *MoD* and *Teleconferencing*
Spot Market Approach

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Distributed</td>
<td>- No guarantees</td>
</tr>
<tr>
<td>- Little a priori info required</td>
<td>- Profit maximization?</td>
</tr>
<tr>
<td>- Low implementation cost</td>
<td></td>
</tr>
<tr>
<td>Stateless & simple calc.</td>
<td></td>
</tr>
<tr>
<td>- Efficient & fair allocations</td>
<td></td>
</tr>
<tr>
<td>- Calculation at network edge</td>
<td></td>
</tr>
<tr>
<td>- Allows demand changes</td>
<td></td>
</tr>
<tr>
<td>- Immediate availability</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Market

Provides guarantees
Model consists of: switches, users and NBs

- **Switch** - two markets per link (reservation & spot)
 - Reservation market
 * Bandwidth divided into equal segments of time
 * Portions of the segment are sold via auction
 * Any unused segment is sold as spot

- **User/NB**
 - Preferences described with an indifference curve
 - NB maximizes the utility

Multi-Market Simulation

Demonstrate advantages of multi-market economy

- Seven link *parking-lot* network configuration
- Segment length was 15 minutes
- Each user transmitted a MPEG video and were
 - Long-term (120 total)
 * 1/2 prefer reserved, remaining prefer cheaper
 - Short-term (40 total)
 * Prefer cheaper, cause sudden demand shift
Multi-Market Approach

Advantages

- Immediate availability and guarantees
- Users can purchase various types
- Users can modify choices as prices change

Disadvantages

- Guarantee duration
Current Bandwidth Pricing

Data carriers (UUNET, MCIWorldCom and AT&T)

- Pricing
 - Tier pricing based on *average* monthly usage

<table>
<thead>
<tr>
<th>Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 100Kbps</td>
<td>x</td>
</tr>
<tr>
<td>101 - 200Kbps</td>
<td>$2x$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Price protected, 384Kbps tier price (*flat rate*)

- Most offer a Service Level Agreement (SLA)

Service Level Agreement

Contract between carrier and client specifying:

- Type of service
- Network reliability
- QoS (latency and loss)
 - Application - average QoS for an application
 - Network - average QoS (currently offered)
- Monitoring method
- Compensation
Bandwidth as a Commodity

- What is required
 - Carriers interconnected
 - QoS standards developed and measured
 - Master agreements (no one-off contracts)
- Bandwidth traded based on price, term and amount
- Want transactions to close quickly (within seconds)

Current Bandwidth Markets

- Current markets include
 www.band-x.com, www.rateexchange.com, and
 www.bandwidth.com
- Companies
 - Interconnected via pooling points
 - Post capacity needed or offered
- Markets match potential buyers and sellers
 - Negotiations may take days to weeks
 - During the negotiation the value may change (opportunity cost).
Future Research

- Pricing for security and fault tolerance
 - Prevent Denial of Service (DoS)
 - ARQoS and MARX projects
- Pricing for IP Differentiated Services (DiffServ)
 - Differentiated pricing based on QoS classes
 - Association of SLA and pricing
 - Pricing a single connection in an aggregate flow

Additional Information

http://www2.ncsu.edu/eos/service/ece/project/rtcomm/ewfulp/WWW/index.html

- Pricing links
- Market descriptions
- SLA descriptions and link