Resource Allocation and Pricing for QoS Management in Computer Networks

Errin W. Fulp

July 14, 1999

Bastille Day

North Carolina State University
Department of Electrical and Computer Engineering
Raleigh, NC
Resource Allocation & QoS

- Quality of Service (QoS) achieved with the proper allocation of network resources
 - Processor time, buffer space, link bandwidth

- Allocation view point
 - Single-user allocation - Efficient allocation to provide QoS for one user
 - Multi-user allocation - Efficient and fair allocation to all users to provide QoS
Thesis Contributions

Single User Allocation

- Dynamic Search Algorithm (DSA+)
 Refereed publications - RTSS’96, JCIS’97, ICNP’97

Multi-User Allocation

- Competitive Market Fairness Proofs
- Spot Market Approach
 Patents pending - US and Japan No. 08/971,127
- Multi-Market Approach
 Conference submission - EC’99

E. W. Fulp
Multi-User Resource Allocation

Allocation Goals

• *Efficient* - High utilization
 • *Fairness* - Network and economic oriented

Allocation Classifications

• Centralized or distributed
• Static or dynamic
• Stateless or state-maintaining
• Microeconomic-based
Microeconomics — The study of the allocation of scarce resources among competing ends. *Nicholson*

- **Model**
 - Users ≡ consumers
 - Switches ≡ producers
 - Link bandwidth ≡ resource

- **Advantages**
 - Maximize utility
 - Optimal distributions
 - Many models and methods
Previous Microeconomic-Based Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constrained max.</td>
<td>Jiang [51]</td>
</tr>
<tr>
<td>ATM VC pricing</td>
<td>Ferguson [32]</td>
</tr>
<tr>
<td>Eff. bandwidth</td>
<td>Kelly [55]</td>
</tr>
<tr>
<td>Smart-market</td>
<td>MacKie-Mason [70]</td>
</tr>
<tr>
<td></td>
<td>centralized</td>
</tr>
<tr>
<td></td>
<td>CBR only</td>
</tr>
<tr>
<td></td>
<td>stat. models</td>
</tr>
<tr>
<td></td>
<td>implement.</td>
</tr>
</tbody>
</table>

Want a microeconomic-method that,

- Distributed
- Little a priori info
- Allows demand changes
- Low implementation cost
Competitive Market Model

Priced-based model proposed by Léon Walras in 1874

- Price influences behavior
- At *equilibrium* the allocation is optimal

Economy consists of multiple competitive markets

- Markets are separate and independent
- Consumers can participate in multiple markets
- Used in the *spot* and *multi-market* approach

E. W. Fulp
Optimality and Fairness

In an economy consisting of multiple competitive markets, \(\{a\} \) (allocation array) is _______,

- **Pareto-optimal** if no one can increase their utility without decreasing the utility of another.

- **Weighted Max-Min Fair** if, for any other feasible allocation \(\{\hat{a}\} \), \(\exists j: \hat{a}^j > a^j \implies \exists k: \frac{\hat{a}^k}{w^k} < \frac{a^k}{w^k} \leq \frac{a^j}{w^j} \)

- **Equitable** if, for any other feasible allocation \(\{\hat{a}\} \), \(\exists j: u^j(\hat{a}^j) > u^j(a^j) \implies \exists k: u^k(\hat{a}^k) < u^k(a^k) \leq u^j(a^j) \)
Spot Market Approach

- **Switch** - Each link is a competitive market
- **User** - Seeks network resources
- **Network Broker (NB)** - Represents the user

Unique Properties
- Demand changes allowed
- Edge calculations
- Immediate availability

E. W. Fulp
Switches

- Bandwidth priced (non-storable resource)

- Each output link is an independent dynamic competitive market

- Price for link i is determined using a modified tâtonnement process
 - Seeks equilibrium price
 - Allows demands to change dynamically
 - Stateless

- **Immediate availability and no reservation overhead**
Example Allocation and Prices

\[p_{n+1}^i = p_n^i \cdot \frac{d_n^i}{\alpha \cdot s_i^i} \]

next price current price aggregate demand

link capacity
User

- Requires link bandwidth for their application
- Represented in the economy via a *Network Broker*

User information

- Bandwidth desired
- Budget w^j
- *QoS profile*, utility curve

QoS Profile

- **Excellent**
- **Good**
- **Poor**

E. W. Fulp
Network Broker

- Agent for the user
- Located at the network edge
- Performs
 - CAC, policing, purchasing decisions
- It knows switch prices and user information
- Determines the amount of bandwidth to purchase

\[
\max \{ w^j (a^j) \}, \quad p^i \cdot a^j \leq w^j \implies a^j = \min_{i \in R^j} \left\{ \frac{w^j}{p^i} \right\}
\]
Spot Market Performance

Steady State (proofs)

- Achieves optimal and fair allocations
 - Pareto-optimal
 - Weighted max-min fair
 - Equitable, must distribute wealth appropriately

Algorithm 5.1

- Price equation always moves towards equilibrium

Network Dynamics (changing demands)

- Use simulation to measure performance
Spot Market ABR Rate Control

• RM-cells are used to obtain network feedback

Spot Market Approach

• Price is distributed using RM-cells

• A switch inserts the link price in the RM-cell if it is higher than what is currently stored.
ABR Simulation

Determine

• How *equitable* under dynamic conditions
 – Average QoS and % Good or Better (% GoB)

• Compare with *perfect* max-min and demand-based WMM

Simulation

• 152 users transmitting MPEG-compressed video traffic with random start times

• Two types of users *MoD* and *Teleconferencing*
Average % GoB

Average QoS Scores

Average QoS Scores for MoD Users

Average QoS Scores for Teleconferencing Users
Spot Market Approach

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Distributed</td>
<td>• No guarantees</td>
</tr>
<tr>
<td>• Little a priori info required</td>
<td></td>
</tr>
<tr>
<td>• Low implementation cost</td>
<td></td>
</tr>
<tr>
<td>Stateless & simple calculations</td>
<td></td>
</tr>
<tr>
<td>★ Efficient & fair allocations</td>
<td></td>
</tr>
<tr>
<td>★ Calculation at network edge</td>
<td></td>
</tr>
<tr>
<td>★ Allows demand changes</td>
<td></td>
</tr>
<tr>
<td>★ Immediate availability</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Market Approach

Two markets per output link

- **Spot market** - Immediate availability
- **Reservation market** - Guaranteed bandwidth

Unique Properties
- Provides guarantees and immediate availability
- User can purchase from various markets
- User can modify choices as prices change
Reservation Market

- Bandwidth sold as an amount over time (segment)
- Switch will auction β percent as reserved bandwidth
- Users bid for an amount of the next segment

- Any unused reserved bandwidth sold as spot bandwidth
User and The Multi-Market

- Must define QoS profile, \(w^j \), desired bandwidth
- Can purchase spot or reserved bandwidth

Indifference curve
Describes preferences for spot and reserved bandwidth
Can purchase *spot* and/or *reserved* bandwidth

Reservation bid based on
- Indifference curve
- Spot and reservation market prices
- Wealth

If not enough reserved bandwidth is purchased, then spot bandwidth is used for the remaining portion
Multi-Market Simulation

Demonstrate advantages of multi-market economy

- Seven link *parking-lot* network configuration
- Each link 45 Mbps, with segment length of 15 minutes
- Each user transmitted a MPEG-compressed video and were considered
 - Long-term (120 total)
 * 1/2 prefer reserved, remaining prefer cheaper
 - Short-term (40 total)
 * Prefer cheaper, cause sudden demand shift
Link 3 Bandwidth Allocation

- Maximum link capacity
- 90% of link capacity
- Total demand
- Total allocated
- Reserved allocated
- Reservation segment boundary

Link 3 Bandwidth Prices

- Spot market
- Reservation market
- Reservation segment boundary

Average QoS Scores

- Prefer cheaper
- Prefer reserved
Multi-Market Approach

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ Immediate availability and guarantees</td>
<td>★ Guarantee duration</td>
</tr>
<tr>
<td>★ Users can purchase various types</td>
<td></td>
</tr>
<tr>
<td>★ Users can modify choices as prices change</td>
<td></td>
</tr>
</tbody>
</table>

E. W. Fulp
Future Work

- Price-based routing
- Connection admission control
- Internet pricing
- Price-based security
- Users selling bandwidth